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Introduction

These notes document the derivation of the cell formulas used in DISPERSION, an approximate EXCEL based model of sounding rocket trajectory errors.  Only the errors in the most important events, apogee altitude and impact point location, are described.  A modified version of the classical Impulsive Burn Kepler Jump (IBKJ) model is used with either a Galilean parabola or numerical derivatives, from, say, QROCKET, to map from burnout to subsequent events.  “Impulsive burn’ is shorthand for the assumption that the powered flight trajectory arc is negligibly small compared to the coasting flight arc.  This is sometimes called the “gun shot” approximation. 

The event error statistics are assumed to be unbiased.  This implies that the predictive models have been suitably validated.  Error sensitivities are assumed to be based on linearized (small) perturbations in burnout velocity magnitude (energy errors) and two components of rotation of the burnout velocity vector.  Since energy and rotation errors arise from different perturbing effects, they are assumed independent.  Furthermore, it can be shown (ref. (2)) that the two rotation errors are also independent.  Next, central limit theorem considerations ensure that the event errors have Gaussian distributions.   Finally, impact Circular Error Probable (CEP) values at specified capture probabilities are estimated by an approximation due to Reid (ref. (3)). 

Finally, this is an extension & correction to the earlier report documented as ref. (1).

Impulsive Burn Kepler Jump Model

The vacuum trajectory parabola results relate burnout velocity V and flight path angle  to apogee altitude h* and impact range r**:
h*  = V2 cos2/ 2g, and

                                                                                                                                           (1)

r**  =  2 V2 cos sin / g,

where g is the acceleration due to gravity.

In Plane Trajectory Errors
Now, consider trajectory errors confined to the plane of the nominal trajectory.  If these errors are small compared to their corresponding nominal values, a Taylor series expansion gives a linearized result.  For example, the error in impact range is

r**  =  (∂ r** / ∂ V) V + (∂ r** / ∂ ) 

Squaring this and averaging over a large ensemble results in

                        var(r**)  =  (∂ r** / ∂ V)2 var(V) + (∂ r** / ∂ )2 var(

since V and  are independent.  Exactly the same kind of math can be applied to the apogee altitude:

                          var(h*)  =  (∂ h* / ∂ V)2 var(V) + (∂ h* / ∂ )2 var(

Note that V and are the burnout velocity and flight path angle assumed to occur at launch.
Although it is not developed further here, the principal sources of burnout velocity errors are weight errors, specific impulse errors and drag coefficient errors.  The principal sources of flight path angle errors are errors in measuring and forecasting the turbulent wind field the rocket flies through, maladjustment of the launcher rail and the misalignment of the thrust vector with respect to the rocket CG.  These sources of error are all mutually independent.  Thus, the composite errors are just their RSS combination.

Cross Plane Trajectory Errors
Trajectory errors in a direction normal to the plane of the nominal trajectory are a bit trickier.  First, the root errors are the same are for the flight path angle errors above, only these errors are orthogonal to, and independent of, the flight path angle errors.  First, note the trigonometric relation sketched below:                               
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Here, c**  is the cross plane displacement of the impact point due to an azimuthal error Az.  Thus, 

c** =  r** tanAz.

Next, consider the spherical triangle sketched below:  


Now, the law of tangents gives

tanAz  = tanθsinθsin
Thus, 

c**  =  r** θsin, or

var (c**)  =  (r**/ sinvar(θ)
Next, observe that θ has no influence on apogee altitude errors because ∂ h* / ∂ θ vanishes as θ → 0.  Lastly, var(θ) is numerically equal to var( because both are identically driven by unmodeled winds, launcher rail maladjustment and thrust misalignment, thus

                                             var (c**)  =  (r**/ sinvar().                                     (4)
Dispersions for a Parabolic Trajectory 
To put this in perspective, evaluate the sensitivities from the IBKJ model assuming very high boost acceleration (the gun shot approximation):
∂ r** / ∂ V  ≈  4 V  cos sin / g,

∂ r** / ∂ ≈V2 cos2 / g,

r**/ sin≈2 V2 cos / g,

∂ h* / ∂ V  ≈  V cos2/ g, and

∂ h* / ∂ ≈V2 cossin/ g.

There is evidence that velocity errors increase as the nominal velocity increases…see ref. (2).  If the energy errors were redefined in terms of relative velocity error instead of absolute (derivatives taken with respect to V/ V), and V2 was replaced by

V2  =  2 g h* / cos2,
then                                                

V ∂ r** / ∂ V  ≈  8 h*tan,

∂ r** / ∂ ≈h*cos2 cos2,

                                                     r**/ sin≈4 h* / cos,                                               (5)

V ∂ h* / ∂ V  ≈  2 h*, and

∂ h* / ∂ ≈h* tan.

This shows clearly that all the above derivatives, and therefore the event dispersions, are proportional to the nominal apogee altitude.  Historically, a review of many dispersion analyses lead empirically to this same observation, and that, in turn, lead to the development of ref. (1).

Event Statistics

First, consider the distribution of impact points on the earth’s surface.  Circular Error Probable is defined as a circle within which a specified fraction of events occur.  At one point, the default fraction was implicitly taken to be 50%, but today it’s common to say “95% CEP” meaning the circle containing 95% of the events.  The CEP concept is directly relevant as a description of impact point errors.

The probability obtained from a surface integral of a bivariate normal distribution over a circular region of radius R mathematically defines the CEP.  If the in-plane and cross-plane standard deviations were the same, this would be a straightforward application of the circular normal, or Rayleigh, probability distribution.  The cumulative Rayleigh distribution also applies to elliptical contours of constant probability density.  If the two standard deviations are equal, the Rayleigh result is

Pr(r ≤ R)  =  1 – exp( – R2 / 2σ2), where

                                        Pr  =  Probability the event is captured by the circle,

                                        R  =  CEP at probability Pr, and

                                        σ  =  Standard deviation of one component.

This relation can be solved for R to give

                                                   R  =  σ √ – 2 log(1 – Pr).                                              (6)
But, in general, the two component sigmas are not equal.  However, an approximation (ref. (3)) due to R.W.Reid of The Aerospace Corp. provides reasonable answer when the two component standard deviations are roughly the same.  Here’s the way Reid’s “equal area” approximation works:                                              
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In the sketch above the ellipse is the true isoprobability density contour, but the circle having the same area will have about the same probability (given by the Rayleigh cumulative distribution).  What’s happening is that the probability density in the regions above and below the ellipse is less than that on the isoprobability density contour while probability density inside the circle beneath the elliptical “ears” is higher that on the isoprobability density contour.  When the ellipse is nearly circular, it can be shown via a Taylor series expansion that the two probability integrals are approximately equal is the circle and ellipse have the same areas.  The resulting “one sigma” circle radius σ if

σ2  =  σC σR, where

                                                        σR  =  In-plane standard deviation, and

                                                        σC  =  Cross-plane standard deviation.

Putting all the pieces together, the desired CEP formula is


                                              R  =  √ – 2 log(1 – Pr) * σC σR.                                         (7)

As already mentioned,


[image: image3]
                        σR  =  √  (V ∂ r** / ∂ V)2var(V/ V) + (∂ r** / ∂ 2var(, and

σC  =  r**√var() / sin.

Finally, the apogee dispersions follow the classical Gaussian distribution with standard deviation σh*:

σh*  =  √ (V ∂ h* / ∂ V)2var(V/ V) + (∂ h* / ∂ 2var(
Unit Wind Effect
The most important source of velocity vector rotation error arises from our inability to measure turbulent gusts, and make the corresponding correction to the launcher angles in a very brief time.  For such errors, 

(∂ r** / ∂ 2var( = In Range UWE2(  ) * var (BW), in range, and

r**2 *var() / sin2Cross Range UWE2(  *  var (BW), cross range, where

BW  =  Ballistic Wind, and

UWE  =   Unit Wind Effect.
The wind response varies with QE analogously with the rotational dispersion errors.  First, the derivative of impact range with respect to flight path angle is 

∂ r** / ∂   =  2 V2 cos2γ / g

Then, 

In Range UWE ( γ )  =  UWE ( 90o ) * ∂ r** / ∂  ( γ ) / ∂ r** / ∂  ( 90o ), or

                               In Range UWE ( γ )  =  UWE ( 90o ) * cos2γ, and,                         (8)

in the same way,    r** / sinγ  =  2 V2 cosγ / g.

Then, 
                                Cross Range UWE ( γ )  =  UWE ( 90o ) * cosγ.                            (9)

The nominal apogee altitude & impact range can be used to find an “effective” γ to be used in the formulae for Unit Wind Effects:

                                                      γ  =  tan-1( r**/ 4 h*).                                               (10)

The data in ref.(4) substantiate this model.  To implement QE corrections for a non-vertical launch, mission planning develops the planned apogee altitude & impact range.  Use eq.(10) to estimate a γ value, and then use eq’s. (8) & (9) to find the Unit Wind Effects.
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